Errata zum Buch: Theo de Jong: Analysis

 $\begin{array}{c} {\bf Pearson~2012,~ISBN~978\text{--}3\text{--}86894\text{--}112\text{--}8} \\ {\bf Stand:~25.~September~2014} \end{array}$

Für Hinweise auf weitere Fehler bin ich sehr dankbar.

 $\hbox{E-Mail: dejong@mathematik.uni-mainz.de}\\$

Seite, Zeile	falsch	richtig
11, 6 v.o und 2 v.u.	Hersch	Hersh
13, 5.v.u.		v ypsilon
15, 5 v.u.	Abzählung	Aufzählung
16, 3 v.o.	Anzahl Elemente	Anzahl der Elemente
16, 9 v.u.	ein Menge	eine Menge
16, 4 v.u.	einer	jeder
17, 15 v.u.	seinen	ihren
20, 20. v.o	10110	10100
20, 5 v.u.	es	sie
22, 5 v.o	b_i	b
23, 6 v.u.	obere	untere
23, 3 v.u.	reellen Zahl	Binärentwickung
23, 3 v.u.	$k \ge n$	k > n
24, 7 u. 8 v.o.	100,1010	100,1000
25, 4 v.o.	$x \cdot y$	das Produkt $x \cdot y$
24, 9 v.0	100,10101	100,10001
26, 2 v.u.	x rational	x rational und $x \neq 1$
30,15 v.o.	Wir definieren $-x < 0 < y$ für positive Zahlen x, y .	Für positive Zahlen x, y definieren wir $-x < 0 < y$ und $-y < -x$ genau dann wenn $x < y$.
30, 16 v.o.	$x \neq y$	x = y

Seite, Zeile	falsch	richtig
31,12 v.o.	Binärentwicklung d	Binärentwicklung x
32, 6 v.o.	alle weitere obere Schranken von A kleiner sind.	es keine kleinere obere Schranken von A gibt.
32, 7 v.o.	wir	wir die
32, 17 v.o.	so ist	so ist, für k fest, die Zahl
34, 14 v.o.	1,828427124	2,828427124
35. 8. v.o	$\sqrt{2} \cdot \sqrt{2} = 2$	$\sqrt{a} \cdot \sqrt{a} = a \text{ für } a \ge 0$
35, 15 v.o.	y_i	y_k
35 12 v.u.	w_1	w_i
35 6 u 7 v.u.	(Im Binärsystem ist $\sqrt{2} = 1,01101\cdots$.)	
36, 7 und 8 v.o.	$\lfloor x \rfloor_N = \lfloor y \rfloor_N$	$\lfloor x \rfloor_{N-1} = \lfloor y \rfloor_{N-1}$
36, 8 und 9.v.o	Dann gilt	Wähle $k > N$ mit $x_{-k} = 1$. Dann gilt
37, 2 v.u.	$x \cdot y + x \cdot z,$	$= x \cdot y + x \cdot z,$
41, 7 v.u.	$\sum_{n=0}^{k}$	$\sum_{k=0}^{n}$
42, 10 v.u.	(s,b)	(s,d)
46, 3 v.u.	Isometrie	Isometrie mit
46, 2 v.u.	Bild von $T(0,1)$	Bild $T(0,1)$
48, 8 v.u.	Gleichungen:	Gleichungen für $(z, w) = T(x, y)$:
49, 10 v. u.	Punkt	Punkt M
51, 11 v.u.	145°	135°
51. 7 v.u.	Sei	Sei $d(O, P) = d(0, E) = 1$
51, 2 v. u.	E und Q	O und Q
52, 10.v.o.	$\sqrt{1-0,359^2}$	$\sqrt{1-0,259^2}$
54, 6 v.o.	$P_i \in \angle POQ \text{ mit}$	P_i mit $d(O, P_i) = 1$ und
57, 11 v.o. 7	$\frac{\pi/2}{x}$	$\frac{x}{\pi/2}$
57, 3 v.o.	$\angle POQ$	$b(\angle POQ)$
57, 3 v.u.	$b(\angle POO_i$	$b(\angle POQ_i)$
57, 1 v.u.	$\angle POZ$	$b(\angle POZ)$
58, 5 v.o.	$x + 2 \cdot k \cdot \pi \le 2\pi$	$x + 2 \cdot k \cdot \pi < 2\pi$
68, 4 v.o.	natürliche	natürlichen
68, 6 v.u.	2(a)	2 a + 1
68, 6 u. 4 v.u.	4 b	4 b + 1
68, 4 v.u.	2 a	2 a + 1
70, 9 v.o.	$(a-\varepsilon,b-\varepsilon)$	$(a-\varepsilon,a+\varepsilon)$
71, 2 v. u.	$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}}$
73, 5 v.u.	$a \in I$	$c \in \mathbb{R}$
88, 2 v.o.	$f \colon [a, \infty]$	$f \colon [a, \infty) \to \mathbb{R}$
96, 3 und 4 v.u.	$ x-1 < \delta$	$0 < x-1 < \delta$

Seite, Zeile	falsch	richtig
102, 10 v.u.	$f(a), x > a, \frac{f(x) - f(a)}{x - a}$	$f(c), x > c, \frac{f(x) - f(c)}{x - c}$
102, 9 v.u.	$f'(a) = \lim_{x \uparrow a} \frac{f(x) - f(a)}{x - a}$	$f'(c) = \lim_{x \downarrow c} \frac{f(x) - f(c)}{x - c}$
102, 9 v.u.	$f'(a) \le 0$ und $f'(a) = 0$	$f'(c) \le 0$ und $f'(c) = 0$
104, 12 v.u.	$k \le 1/h \le k+1$	$k \le 1/h < k+1$
105, 4 v.u.	$\lim_{x \to 0} (1+x)^{1/x} = 1$	$\lim_{x \to 0} (1+x)^{1/x} = e$
107, 4 v.u.	n'-te	n-te
108, 2 v.o.	R	\mathbb{R}
109, 3 und 5 v.u.	Sei	Seien
110, 5 v.u.	$T_f^4(0,5)$	$T_0^4 f(0,5)$
111, 8 v.u.	Sei	Seien
111, 7 v.u.	Dezimale	Dezimalen
113, 7 v.u.	konvex (konkav) ist genau dann,	ist genau dann konvex (konkav),
113, 6 v.u.	mu	μ
113, 1 v.u.	0 < x < y.	0 < x, y.
116, 7 v.o.	montonon	monoton
116, 11 v.u.	Wegen dem Mittelwertsatz	Wegen des Mittelwertsatzes
117, 3 v.o.	sechszehn	sechzehn
118, 9 v.u.	$-rac{F_x(a,b)}{F_y(a,b)}$	$-\frac{F_x(x,g(x))}{F_y(x,g(x))}$
119,13 v.o.	(x,y)	f(x,y)
120, 4 v.o.	$\xi \in (0, ct), \eta \in (0, td)$	ξ zwischen 0 und ct und η zwischen 0 und td
122, 10 v.o.	reellen	reeller
120, 2 v.u	können	mit $y = g(x)$ können
123, 18 v.o.	Absolute Reihen	Absolut konvergente Reihen
123, 3 v.u.	$\sum_{i=1}^{\infty} \sum_{j=0}^{\infty} a_{ij}$	$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij}$
123, 1 v.u.	$\sum_{i=1}^{\infty} \sum_{j=0}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=0}^{\infty} a_{ij}$	$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{ij}$ $x + x^{2} + x^{3} + x^{4}$
124, 3 v.o.	$e^{x} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$	$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$
127, 2 v.o.	konvergent genau dann	genau dann konvergent
127, 2 v.u.	3.	3. Für $\alpha \in \mathbb{N}$ gilt:
129, 9 v. o	$\sum_{n=0}^{\infty} \frac{1}{10n}$	$\sum_{n=1}^{\infty} \frac{1}{10n}$

Seite, Zeile	falsch	richtig
130, 7 v.o.	$\sum_{k=0}^{2n} a_k$	$\sum_{k=1}^{2n} (-1)^{k+1} a_k$
130, 7 v.o.	$\sum_{k=0}^{\overline{k}=0} a_k$	$\sum_{k=1}^{\kappa=1} \frac{2n-1}{(-1)^{k+1}} a_k$
130, 11 und 14 v.o.	++	
130, 15 v.o	wachsende	fallende
130, 15 v.o.	$\lim_{n\to\infty} a_n$	$\lim_{n\to\infty} a_{2n+1}$
131, 7 v.o.	als 10^{-2} abweicht.	als 10^{-2} abweicht?
132, 7 v.o.	absolut konvergent genau dann	genau dann absolut konvergent
132, 10 v.o.	konvergiert	konvergent
132, 8 v.u.	$\sum_{k=N}^{\infty}$	$\sum_{n=N}^{\infty}$
132, 7 v.u.	$\frac{\sum_{k=N}^{\infty}}{\sum_{k=0}^{\infty}}$	$\frac{\sum_{n=N}^{\infty}}{\sum_{n=0}^{\infty}}$
133, 11 v.u.	$\log(n)^{\alpha}$	$(\log(n))^{\alpha}$
134, 5 v.o.	$\sum_{i=0} a_i$	$\sum_{i=0}^{\infty} a_i$
134, 12 v.o.	$\sum_{i=0}^{\infty} a_i$ $\sum_{i=0}^{\infty} a_{ij}$	$\sum_{i=0}^{\infty} a_i$ $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij}$
134, 7 v.u.	$\sum_{i=1}^{\infty} a_i \text{ und } \sum_{j=1}^{\infty} b_j$	$\sum_{i=0}^{\infty} a_i \text{ und } \sum_{j=0}^{\infty} b_j$
134, 5 v.u.	$\sum_{i=1}^{\infty} a_i \cdot \sum_{j=1}^{\infty} b_j$	$\sum_{i=0}^{\infty} a_i \cdot \sum_{j=0}^{\infty} b_j$
136, 3 v.u.	$a_{\sigma(1)}$	$a_{\sigma(0)}$
137, 2 v.o.	22	23
137, 4 v.o.	$k_0 \le k_1 \le k_2 \le \cdots,$	$k_0 < k_1 < k_2 < \cdots,$
137, 5 v.o.	j < N	i < N
137, 6 v.o.	$\sigma(n)$	$a_{\sigma(n)}$
138, 2 v.u.	dieser Grenzwert gleich R .	$R = 1/\lim_{n \to \infty} \sqrt[n]{ a_n }.$
139, 3 v.u.	bei Definition	gemäß Definition
140, 15 v.u.	$\log(2) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$	$\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$
140, 5 v.u.	$\sum_{k=1}$	$\sum_{k=1}$
141, 10 v.u.	Konvergenzradius	positivem Konvergenzradius
141, 9 v.u.	kleine	kleinen
142	Das gewählte R im Beweis von Satz 5.15 ist falsch.	Für die Korrektur, siehe Ende der Errataliste.
148, 10 v.o.	++	+
148, 10 v.o.	+-	_
148, 5 v.u.	$i^2 = 1$	$i^2 = -1$
148, 7 v.u.	(c+d)i	(c+di)
148, 3 v.u.	= (ab - cd) + (ad + bc)i	= (ac - bd) + (ad + bc)i
149, 3 v.o.	(ab-cd,ad+bc)	(ac-bd, ad+bc)
153, 8 v.u.	$(\sqrt{3}+1)^6$	$(\sqrt{3}+i)^6$

Seite, Zeile	falsch	richtig
155, 2 v.u.	$z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^5}{5} + \frac{z^7}{7} - \cdots$	$z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \frac{z^5}{5} - \cdots$
158, 4 v.o.	Lemma's	Lemmata
158, 12 v.0.	$ b_0 +\cdots+ b_\ell $	$\min\{1, b_0 +\cdots+ b_\ell \}$
158, 15 v.o.	g(z)	g(z)
158, 16 v.o.	$f(\lambda z) $	$ f(\lambda z) $
158, 4 v.u.	$\frac{f(\lambda z) }{\frac{a_0}{z}}$	$\frac{ f(\lambda z) }{\frac{a_0}{z^n}}$
159, 10 v.o.	$z_n \in \mathbb{C}$	$z_n \in C_R$
163, unter dem Bild	$f(x) + h \cdot f(x)$	$F(x) + h \cdot f(x)$
163, 7 v.u.	$+\frac{1}{2}\log(x+1)$	$-\frac{1}{2}\log(x+1)$
168,3 v.o.	\mathbb{R}	\mathbb{R}^2
168, 14 v.u.	$b \le x < b + \frac{1}{2^k}$	$b \le y < b + \frac{1}{2^k}$
169, 7 v.o	$V_{c,o,k}$	$V_{c,0,k}$
169, 3 v.u.	$a_{j+1} \ge b_j$ und im zweiten $a_{j+1} < b_j$.	$a_{j+1} \ge b_j$. Im zweiten Fall dürfen wir annehmen, dass $[a_j, b_j) \not\subset [a_i, b_i)$ für alle $i < j$ und deshalb $a_{j+1} \le b_j$.
170, 10 v.u.	eine Zahl	eine Zahl x
173, 3 v.u.	Es sei	Es seien
176, 10 und 11 v.o.	$\int \frac{1}{e^x + 1}$	$\int \frac{1}{e^x + 1} dx$
177, 7 v.o.	$15. \int \frac{\sqrt{x^2 - 1}}{x}$	$\int \frac{1}{e^x + 1} dx$ $\int \frac{\sqrt{x^2 - 1}}{x} dx$
177, 2 v.u.	$\int \frac{1}{(x^2 + 2px + q)^n} \text{ und } \int \frac{x}{(x^2 + 2px + q)^n}$	$\int \frac{1}{(x^2+2px+q)^n} dx \text{ und } \int \frac{x}{(x^2+2px+q)^n} dx$
182, 7 v.u.	$R(\cosh(t), \sinh(t))$	$R(\cosh(t), \sinh(t))$
183, 1 v.u	$ \begin{array}{ccc} 25. & \int \frac{1}{\sqrt[3]{x+1}}, dx \\ & \int_{a}^{b} = \end{array} $	$25. \int \frac{1}{\sqrt[3]{x+1}} \mathrm{d}x$
184, 13 v.o	$\int_a^b =$	$\int_{a}^{b} f(x) dx =$
190, 4 v.o.	$\sum_{i=k}^{k}$	$\sum_{i=1}^{k}$
191, 9 v.o	$L(f,\pi,0)$	$L(f,0,1/\pi)$
194, 14.v.o.	ist A	A ist
196, 7. v.o.	$R \setminus (Q_1 \cup \cdots \cup Q_n)$	$R \setminus (Q_1 \cup \cdots \cup Q_N)$
206, 10 v.o.	$g \colon A \to \mathbb{R} \text{ mit } g(x) < f(x)$	$g_n \colon A \to \mathbb{R} \text{ mit } g_n(x) < f_n(x)$
208, 3 v.o (2x)	$g: A \to \mathbb{R} \text{ mit } g(x) < f(x)$ $\left(1 - \frac{x}{k}\right)^2$	$\left(1-\left(\frac{x}{k}\right)^2\right)$
210, 4 v.o	$\pi x \cot(x)$	$\pi x \cot(\pi x)$

Neuer Beweis von Satz 5.15

Ohne Einschränkung ist f(0)=1. Wir schreiben f(x)=1-h(x) mit $h(x)=a_1x+a_2x^2+\ldots$ Sei $g(x)=|a_1x|+|a_2x^2|+\ldots$ Dann gilt $|h(x)|\leq g(x)$ für |x|< S. Es existiert wegen der Stetigkeit ein R>0, sodass g(x)<1 für |x|< R. Wegen des Cauchyproduktes gilt $h(x)^n=\sum_{j=1}^\infty h_j^{(n)}x^j$ mit

$$h_j^{(n)} = a_0 h_j^{(n-1)} + a_1 h_{j-1}^{(n-1)} + \dots + a_{j-1} h_1^{(n-1)}$$

für |x| < R und $n \ge 1$. Analoges gilt für $g(x)^n = \sum_{j=1}^\infty g_j^{(n)} x^j$. Ein einfacher Induktionsbeweis zeigt $|h_j^{(n)}| \le |g_j^{(n)}|$. Es folgt für |x| < R:

$$\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} |h_j^{(n)} x^j| \le \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} |g_j^{(n)} x^j| = \sum_{n=1}^{\infty} g(x)^n = \frac{1}{1 - g(x)} - 1.$$

Deshalb ist die linke Seite für |x| < R absolut konvergent. Es folgt mit Satz 5.9:

$$1 + \sum_{j=1}^{\infty} \left(\sum_{n=1}^{\infty} h_j^{(n)} \right) x^j = 1 + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} h_j^{(n)} x^j = 1 + \sum_{n=1}^{\infty} h(x)^n = \frac{1}{1 - h(x)} = \frac{1}{f(x)}.$$